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Abstract –The main goal of this article is select the appropriate weight matrices to design the state feedback control LQR of the
aircraft landing system. As we know, select the suitable weight matrices for optimal control system is not simple and so far
systematic method to determine the appropriate weight matrices are not provided. In other words, there is no direct link between the
weights and the optimal profile control system and select weight matrices using the trial and error method and based on designer's
experiences are done. In this paper, we use Differential Evolution Algorithm technique (DE) to determine the weight matrices.
Benefits of proposed method can be cited profile sustainable convergence and high computational speed. Simulation results show
that comparison with Imperialist Algorithm (ICA), method of differential evolution algorithm in determining the appropriate weight
matrices and optimal controller design (LQR) is very strong.
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Algorithm (ICA).

1. Introduction

In most of systems in order to designing and solving
many issues, we need to select an answer as the optimal
response from a wide range of possible answers but
because of large extent answers collection, virtually all
the answers can not be tested and this test should be
done randomly. On the other hand, the random process
must be done in such a way that will converge towards
the best answer. Because linear quadratic optimal
control theory is easily implemented in engineering
problems and it is the base of other control theories, it
has special importance [1]. Nevertheless, in certain
cases that the cost function is a linear quadratic function
optimal response is convergent to the linear quadratic
regulator response. LQR technique has been used
widely in areas such as control of induction motors and
controlling the vehicle crank [1, 2]. About the issue of
choosing the appropriate weight matrices in the
controller design various methods have been suggested.
For the first time Kalman [3] has presented a way to
determine the weight matrices based on the given poles
and Wang [4]. Recently, many attempts have been done
to design the controller using genetic algorithms
colonial competition [5, 6 and 7]. Fundamental issue is
that we determine the best weight matrices that meet
optimal condition monitoring system in the possible
minimum time. In this article, recommended using
Differential Evolution Algorithm to determine the
weight matrices and will show that results meet
monitoring system requirements and desired system
specifications and will check the of advantages of the
method over Imperialist Competitive Algorithm.

This paper is organized as follows: In Section II, we
examined linear quadratic optimal control problem. In
section III, introduced tools to optimize deal that is
including review and introduce Differential Evolution
Algorithm and Imperialist Competitive Algorithm and

the laws governing these algorithms. In section IV, we
examined usage of the Differential Evolution Algorithm
for state feedback design and determine the appropriate
weight matrices in the optimal controller. In section V,
simulation results using the Differential Evolution
Algorithm with the results of Imperialist Competitive
Algorithm method are compared. Conclusions form the
final section of the article.

2. LQR Controller

One of the state space based optimal control method
is Linear Quadratic Regulator (LQR). In this section we
briefly describe this method. Consider the following
linear, continuous-time and controllable system:

x Ax Bu  (1)
The following objective function is defined:
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Where, Q and R are weighting matrices and should be
positive-semi-definite and positive-definite,
respectively. Since system (1) is controllable, the
method which is able to minimize (2) is called LQR.
Considering the functional (2) in LQR the following
Riccati equation should be solved:

1 0T TPA A P PBR B P Q    (3)
By solving the above Riccati equation the positive-

definite matrix P is obtained, thus the optimal gain and
controller are calculated as:

1 TK R B P (4)
u Kx  (5)

Therefore, the closed-loop poles are the eigenvalues
of A BK . In this paper the eigenvalues of A BK are
shown as  1 2, , , n     .
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In an LQR problem, the weighting matrices which are
Q and R , demonstrate profound effect on the
performance of controller. On the other hand, finding
the best Q and R needs many computer simulation and
trial and errors, which are very time-consuming. Thus
using optimization methods for finding Q and R is
more effective. In this paper, we use Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO) as two
optimization tools. Firstly, in the next section we are
going to describe the optimization problem for finding
Q and R .

3. Optimization Tools

3.1 Deferential Evolution Algorithm

Price and Storn proposed Differential Evolution (DE)
in mid 1990s [8, 9], to deal with optimization problems,
defined in continuous domains. DE has similarities with
both GA and PSO. DE uses information of all
individuals, and differences between them, to create
new solutions for optimization problem. The new
solutions are created using difference and trial vectors.
To create a new solution y , an old solution a is
perturbed using the following rule:

( )y a F b c    (6)
Where b and c are two individuals, randomly selected
from population, and a b c  . Vector F is the scaling
factor, and its elements are uniformly distributed
random numbers in min max[ , ]F F . Operator  is the
element-wise multiplication operator. To create final
solution z , crossover operator is applied to y and
another randomly selected individual x . There are
various methods of crossover. Simplest case is
formulated as follows:
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, otherwise
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Where xi indicates i -th element of vector x , scalar r is
a uniformly distributed random number in [0, 1], CR is
the Crossover Rate parameter, and i0 is a random integer
index in the set{1,2,3,..., }n . It is assumed that numbers
of search space dimensions (also the number of
elements of solution vectors) are equal to n . In this way,
DE uses information of current population, to create
individuals of the next iteration (generation). This
process is carried out, until termination conditions are
satisfied.

3.2. Imperialist Competitive Algorithm

Imperialist Competitive Algorithm (ICA) is proposed
by Atashpaz-Gargari et al. [10, 11], and it is inspired by
imperialist competition. Similar to GA, which simulates
the natural evolution process to solve an optimization
problem, ICA simulates the socio-political evolution to
deal with optimization problems. In ICA, individual
solutions are referred as (virtual) countries. Some of
good countries in the initialization phase, which are
named imperialists, form their own imperial. They
capture their colonies from other non-imperialist

(normal) countries. In every the iteration (decade) of
ICA, the following operations are carried out:

3.2.1 Assimilation of Colonies

Colonies of each imperialist are assimilated to their
respective imperialist. Assimilation is formulated as
following:

( )new old old
col col imp colx x x x   r (8)

where  is assimilation factor, and r is a vector, and
its elements are uniformly distributed random numbers
in [0,1] . impx , old

colx and new
colx are position of imperialist,

old position of colony, new position of colony,
respectively. In [10, 11], the new position of colony is
angularly deviated. For more information about
deviation, refer to [10] and [11].

3.2.2 Revolution of Colonies

Similar to mutation operator in GA, selected colonies
of every imperialist are changed randomly, or revolved.
Revolution is applied to a colony, with a probability of

rp .

3.2.3 Exchange with Best Colony

If after assimilation and revolution steps, there are
colonies which are better than their respective
imperialists, the imperialist is exchanged with its best
colony. In other words, imperialist will be colony, and
the best colony will be the new imperialist.

3.2.4 Imperialist Competition

Weakest imperialist among others, loses its weakest
colony. One of other imperialists will capture the lost
colony, randomly. The better the imperial, the more
probable it will possess the colony. An imperialist
without colony will collapse. It will become a colony,
and captured by other imperialists. The mentioned steps
are carried out, while stop conditions are not satisfied.

4. Using DE to Determine the Appropriate
Weight Matrices

For finding the appropriate weight matrices, we will
do as follow: First we will get the elements of weight
matrices randomly in the defined limit and we will
calculate the amount of controller’s gain through LQR
commands with Matlab software. We must pay attention
that the two conditions of det 0,det 0Q R  should
always exist [12-13]. Then we will calculate the control
energy matrix and also the state variable of

( )x t .Furthermore, we calculate the correlations of cost
( J ) and the total of error absolute value. For every
answer of in the main population which is known as x .
We will store the minimum amount of answers cost
correlations and minimum amount of errors also put the
condition for stopping algorithm will be when it reaches
the number of pre-defined cycles.
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1) Three answers from the members of main
population will be chosen randomly by the names
of , ,a b c .The three given answers are not equal to
each other or to x .

a b c x   (9)
2) The new answer which is shown by y will be

achieved through mutation.

1 2( , ,..., )

( )
n

i i i i i

y y y y

y a b c


  
(10)

That i is fixed coefficient with monotonous
in [0.5,1.5] .
3) Another new answer will be achieved through

cross action with probability of 0.3crP  and it will
be shown with x .
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

(11)

In the before formula ix is related to main answer and
iy is related to the new answer and ix  is a combination

of main answer and new answer.  0 1 2, ,..., ni i i i is the ideal
index and it is chosen randomly so that at least in one
case x , x are different.
4) The answer of x is evaluated in accordance with

control index .If x is better than x , and then we
will replace x with x . Other wise we will ignore
x .

Figure 1. Aircraft Landing System

5. Simulation Results

We consider the landing system of aircraft as a
complicated system with 6 sate variables [5]. The first
figure shows this model. The illustration of state apace
of this system is presented in formula (12).
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(12)
So u is the propelling speed of the aircraft ( 1ms ) ,

w is down ward speed ( 1ms ) , q is the pitch speed to
the ground ( 1deg rees ) ,  is pitch angle to the ground
( deg rees ), h is the altitude ( m ) , e is propelling
velocity ( 2ms ),  is elevator angle ( deg rees ),  is
throttle value ( 2ms ),  is spoiler angle ( deg rees ).
Input of ( )T   must be designed in a way that the
aircraft lands with illustrated way as shown in the
following equation.

0.2 0h h  (13)
The control index is that the amount of absolute value

integral of error
0

tf

IAE edt  is minimum. The first

amounts of system state are as follow:
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From equation (12) we have 1.133h w    . With
placing this equation in equation (13) we will have:

30 30

2 4 5
0 0

1.133 0.2 1.133 0.2w h dt x x x dt       
(14)

In a way that 5 4 2, ,h x x w x   .
The design pattern is that we first choose Q, R

matrices. In second step the equation of (1) and (3) will
be solved through computation and the simulated results
will define if the limitation of the system is solved or
not. If the limitations of control system have not been
considered, the weight matrices are chosen again and
process goes on. Based on above-mentioned algorithm
choosing suitable weight matrices are very difficult and
with trial and error it takes a lot time. One of the result
trial and errors is brought to you as follow:
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And feedback matrix is calculated as follow:
0.3477 0.805 0.8403 1.6266 0.1734 0.1620

1.0778 0.2552 0.1345 0.4379 0.1669 1.5443
1.0942 0.4669 0.0395 0.8032 0.4046 0.679

K
     
   
      

Table 1. Comparison Integral Amount of Error Absolute Value for
Pursing Aircraft Desired Path

Trial and
error ICA DE Air craft

Desired path
46.198 22.031 10.068 IAE

The result of aircraft landing simulation is in figure 2.
The amount of absolute value integral is achieved
through trial and error 46.198 .

Analysis of the results achieved through
implementation of DE algorithm and ICA algorithm:
Parameters used in ICA algorithm are as: Population
size of country 50 , cross rate 30% , the minimum
amount of adaptability coefficient 1.25 , the cost of
exploited colonies through kingdom 0.1 ,revolution
percentage 10 ,search limitation [0,20] and the number
of iteration 50 are considered. Parameters used in DE
algorithm are as: Population size of country 50 , cross
rate 30% , the minimum amount of scale coefficient 0.5 ,
the maximum amount of scale coefficient 1.5 , search
limitation [0,20] and the number of iteration 50 are
considered. The amount of absolute value integral error
is presented in table 1 along with implementation of all
presented ways. Figures 3 and 4 show input graph for
spoiler angle and elevator angle with the use of different
ways. With regard to the results in table 2 we see that
the maximum control force will be decreased
significantly through the use of differential evolution
algorithm. Figure 2 shows that by defining weight
matrices through differential evolution algorithm, the
aircraft will land in the predefined way. Figures 3 and 4
also show that in this case performance of control
system will be improved.

Table 2. Comparison of Maximum Amount for Control input with
Different Methods.

Maximum
amountThrottleElevator angleSpoiler

angle

Trial and error17.55719.5587.991

ICA13.89314.8953.556

DE6.3589.5352.795
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Figure. 2 weight matrices through differential evolution
algorithm.
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Figure. 4 input graph for elevator angle
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Figure. 5 Throttle value verses time variations
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5. Conclusions

This paper offers a method for determining weight
matrices for optimal control system design using
differential evolution algorithm. Characteristics of the
algorithm presented can be cited high computational
speed, High success rate algorithm and faster
convergence. Simulation results in comparison with
previous experiments are very satisfactory and we see
that responses obtained using this method has better
performance.
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